

MicroLap: MicroLap: Microwave Lap-Timing from HHF

Prof. H. Heuermann Kai Hanisch

06.09.2010

Motivation

- Solution for timing purposes in motorsport applications
- Highly flexible
- Highly accurate

Cost effective

PC-controlled

Basestation 2.45GHz- receiver

Highlights of MicroLap

- Full developed and tested lap-timing system
- Highly flexible, best for
 - Race tracks (single- and multi-point-measurements)
 - Off-road, on-water (long distance up to 150m), free-space
- Highly accurate
 - Optimized antennas
- Cost effective in
 - Production
 - Installation

Development History

- Start of diploma thesis autumn 2006
- Proof-of-concept spring 2007
- Funding through EU / state scholarship in autumn 2007
- Fully functional prototype system with 40 transponders in winter 2007/2008
- Second generation system in spring 2008

Antenna for long distance applications in 2009

Receiver with monitor to show the actual results

Development Side-Steps

- Energy saving concepts with separate RF-activation signals have been developed, but postponed
- Solutions with user-readable lap-time displays have been developed, but canceled for greater battery life and simplicity of design
- The final transponder layout is the 28th version, but less complex in design than many of its predecessors

Transponder with display

Concept of MicroLap

- 2.45 GHz multi-channel system
- Up to 2000 transponder signals processed simultaneously

Concept of MicroLap / Transponder

- Individual frequency channel
- 62.5 kHz channel spacing
- 10 dBm / 10 mW RF power

- Current dimensions ~ 80x45x17 mm³
- Main dimension constraints: Antenna and battery
- Current weight: ~ 90 grams with partial casting compound

Robust, cost and place efficient antenna

- Low noise layout
- Highly optimized antennas
- NF bandwidth saving for efficient A/D conversion

Antenna

Frequency spectrum to explain functionality

Frequency spectrum to explain functionality

Compact antenna for short range applications

- Narrow antenna lobe (beam) increases range and precision
- Several studies led to development of a quadruple-patch group layout
- No dielectric losses for high efficiency
- Compact layout
- 14 dBi, circular polarisation, 35° horizontal beam width

Large antenna for long range applications

- Very narrow antenna lobe (beam) increases range and precision
- No dielectric losses for best efficiency

40 dBi, circular polarisation, 4° horizontal beam width

Gruppenantenne

Concept of MicroLap Signal Processing I

- A/D Conversion with specialized hardware in a standard PC (12 bit, 40 MS/sec)
- FFT limits timing accuracy in current layout

Concept of MicroLap Signal Processing II

Acquisition of passing time with an optimal signal

Concept of MicroLap Signal Processing III

Actual signal shape of a passing transponder

Concept of MicroLap Signal Processing IV

- Transponder signal has to be monitored before and after it passes the finish line
- Threshold signal can be used to trigger external device, e.g. photoelectric barrier, <u>before</u> passing
- Signal shape can be used to enhance precision

MicroLap-test in Most

MicroLap Test Program

A large number of tests were conducted:

- Motorcycle street events in Dijon, Most, Brünn (Brno) and Valencia
- Motocross training in Kleinhau near Aachen
- Test program included measurements of
 - precision (self-related and competitor solution)
 - range
 - reliability
 - immunity against RF disturbance
 - parallel measurement of multiple transponders
 - effects of shadowing by other motorcycles

MicroLap Test Results

 System was tested on numerous occasions during street and motocross events

MicroLap Test Results

 Valid detection rate improved from 95% in 2007 to 100% during the last tests

MicroLap Test Results II

Excerpt from simultaneous crossing test
(12 transponders fitted to one motorcycle):

- Standard deviation first passing: 5.97 ms

- Standard deviation second passing: 4.32 ms

- Standard deviation lap time: 4.98 ms

- Absolute maximum deviation: 17 ms

MicroLap System Performance

- Up to 30 meters of detection range with short range antenna
- Timing accuracy limited to ~ 10 ms by FFT hardware
- Easily upgradable to multiple intermediate measurement points
- Up to 14 days of standby time

Manufacturing Costs

Estimation of one system with 200 transponders:

Transponder raw material (excluding battery) ~30€

Receiver station

~2500 €

- Additional requirements:
 - Charging device for single transponder

~10€

- Charging device for multiple transponder

~100€

Development Costs

Costs of the past for one system with 60 transponders and two antennas:

	2 engineering man years:	~100 t€
•	1 man year university personnel:	60 t€
•	0.5 man year software development:	25 t€
	Hardware, material	15 t€
•	Production costs	15 t€
•	Testing costs	10 t€
		 225 t€

Future Prospects

Future Prospects

- New receiver implementation
- Quicker FFT (~100 µs)
- Higher analog bandwidth (65 MS/s)
- Higher digital resolution (14 bit)
- Manufacturing costs cut in half

Tests at different positions

Future Prospects

Pre-development of low-cost receiver station

FPGA – Board (FFT)

ADC - Board

Our Price of MicroLap

We offer MicroLap for 68.000€ including:

- All rights of the system
- One full working and tested MicroLap system including
 - short and long range antenna
 - receiver station in a waterproof case for display and plot of actual results
 - over 60 transponder
 - specials like charging stations and transponder with Lap-timing-display
 - a lot of electronic components
- Training and documentation for production

Heuermann HF-Technik GmbH; Prof. H. Heuermann

Auf dem Anger 29; D-52076 Aachen; Germany Mail: <u>Heuermann@HHFT.de</u>; Internet: <u>www.HHFT.de</u> Tel.: +49 2408/9379019; Fax: +49 2408/9379952 Tel.-FH: +49 241/6009-52108